MARK SCHEME for the March 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE[®] components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	Page 2	Mark Scheme	Syllabus Paper				
		Cambridge IGCSE – March 2	0606 12				
1	(i)	Members who play football or cricket, or both	B 1				
	(ii)	Members who do not play tennis	B 1				
	(iii)	There are no members who play both football and tennis	B1				
	(iv)	There are 10 members who play both cricket and tennis.	B1				
2		$kx - 3 = 2x^{2} - 3x + k$ $2x^{2} - x(k + 3) + (k + 3) = 0$	M1	for attempt to obtain a 3 term quadratic equation in terms of x			
		Using $b^2 - 4ac$, $(k+3)^2 - (4 \times 2 \times (k+3))$ (<0) (k+3)(k-5) (<0)	DM1 DM1	for use of $b^2 - 4ac$ for attempt to solve quadratic equation, dependent on both previous M marks			
		Critical values $k = -3, 5$ so $-3 < k < 5$	A1 A1	for both critical values for correct range			
3	(i)		B1 B1 B1	for shape, must touch the x-axis in the correct quadrant for y intercept for x intercept			
	(ii)	$4-5x = \pm 9$ or $(4-5x)^2 = 81$	M1	for attempt to obtain 2 solutions, must be a complete method			
		leading to $x = -1$, $x = \frac{13}{5}$	A1, A1	A1 for each			
4	(i)	$729 + 2916x + 4860x^2$	B1,B1 B1	B1 for each correct term			
	(ii)	$2 \times their \ 4860 - their \ 2916 = \ 6804$	M1 A1	for attempt at 2 terms, must be as shown			

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

5 (i)	gradient = 4 Using either (2, 1) or (3, 5), $c = -7$ $e^{y} = 4x + c$	B1 M1	for gradient, seen or implied for attempt at straight line equation to obtain a value for <i>c</i>
	so $y = \ln(4x - 7)$	M1,A1	for correct method to deal with e^y
	Alternative method:		
	$\frac{y-1}{5-1} = \frac{x-2}{3-2}$ or equivalent	M1	for attempt at straight line equation using both points
		A1	allow correct unsimplified
	$e^{y} = 4x - 7$ so $y = \ln(4x - 7)$	M1 A1	Tor correct method to dear with e
(ii)	$x > \frac{7}{4}$	B1ft	ft on their $4x - 7$
(iii)	$\ln 6 = \ln(4x - 7)$		
	so $x = \frac{13}{4}$	B1ft	ft on <i>their</i> $4x - 7$
6 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x(2\sec^2 2x) - \tan 2x}{x^2}$	M1	for attempt to differentiate a
	Or $\frac{dy}{dx} = x^{-1} (2 \sec^2 2x) + (-x^{-2}) \tan 2x$	A2,1,0	-1 each error
(ii)	When $x = \frac{\pi}{8}$, $y = \frac{8}{\pi}$ (2.546)	B1	for <i>y</i> -coordinate (allow 2.55)
	When $x = \frac{\pi}{8}$, $\frac{dy}{dx} = \frac{\frac{\pi}{2} - 1}{\frac{\pi^2}{64}}$ = $\frac{32}{\pi} - \frac{64}{\pi^2}$ (3.701)		
	Equation of the normal:		
	$y - \frac{8}{\pi} = -\frac{\pi^2}{32(\pi - 2)} \left(x - \frac{\pi}{8}\right)$	M1	for an attempt at the normal, must be working with a perpendicular gradient
	y = -0.27x + 2.65 (allow 2.66)	A1	allow in unsimplified form in terms of π or simplified decimal form

	Page 4	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE – March 2	0606 12			
				1		
7	(i)	$p\left(\frac{1}{2}\right):\frac{a}{8} + \frac{b}{4} - \frac{3}{2} - 4 = 0$	M1	for correct	use of $x = \frac{1}{2}$	
		Simplifies to $a + 2b = 44$	N/1	for correct and of a 2		
		p(-2):-8a+4b+6-4=-10	MI DM1	for correct use of $x = -2$		
		Simplifies to $2a-b=3$ de Leads to $a=10, b=17$	A1	for solution of equations for both, be careful as AG for <i>a</i> , allow verification		
	(ii)	$p(x) = 10x^3 + 17x^2 - 3x - 4$	B2.1.0	-1 each err	or	
	()	$-(2r-1)(5r^2+11r+4)$				
		=(2x-1)(5x+11x+4)				
	(iii)	$x = \frac{1}{2}$	B1			
		$x = \frac{-11 \pm \sqrt{41}}{10}$	B1, B1			
8	(a) (i)	Range $0 \le y \le 1$	B 1			
	(ii)	Any suitable domain to give a one-one function	B1	e.g. $0 \le x$	$\leq \frac{\pi}{4}$	
	(b) (i)	$y = 2 + 4 \ln x$ oe	M1	1 for a complete method to		o find the
	(~) (-)	y = 2		inverse		
		$\ln x = \frac{y-2}{4}$ oe				
		$a^{-1}(\mathbf{r}) - e^{\frac{x-2}{4}}$	A 1	must be in	the correct fo	\rm
		$\int_{C} \frac{g(x)}{x} dx$	R1	must be m		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		Range $v > 0$	B1 B1			
	(ii)	$g(x^2+4)=10$	M1	for correct	order	
		$2+4\ln(x^2+4)=10$	DM1	for attempt	to solve	
		leading to $x = 1.84$ only	A1	for one sol	ution only	
		Alternative methods				
		Alternative method: $h(x) = x^2 + 4 = e^{-1}(10)$	M1	for correct	ordor	
		$\Pi(x) = x + 4 = g$ (10) -1(x c) 2 2 x 2			oruer	
		$g^{-1}(10) = e^{2}$, so $x^{2} + 4 = e^{2}$	DM1	for attempt	to solve	
		leading to $x = 1.84$ only	Al	tor one sol	ution only	
		4	_			
	(iii)	-=2x	B 1	for given e	quation, allo	w in this
		$x^2 = 2$	M1	for attempt	to solve mu	st be using
			1788	derivatives		st of using
		$x = \sqrt{2}$	A1	for one sol	ution only, al	low 1.41 or
				better.		

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0606	12

9 (i)	Area of triangular face = $\frac{1}{2}x^2\frac{\sqrt{3}}{2} = \frac{\sqrt{3}x^2}{4}$	B1	for area of triangular face		
	Volume of prism = $\frac{\sqrt{3}x^2}{4} \times y$	M1	for attempt at volume <i>their</i> area $\times y$		
	$\frac{\sqrt{3}x^2}{4} \times y = 200\sqrt{3}$				
	so $x^2 y = 800$	A1	for correct relationship between x and y		
	$A = 2 \times \frac{\sqrt{3x^2}}{4} + 2xy$	M1	for a correct attempt to obtain		
	leading to $A = \frac{\sqrt{3}x^2}{2} + \frac{1600}{x}$	A1	triangular face for eliminating <i>y</i> correctly to obtain given answer		
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = \sqrt{3}x - \frac{1600}{x^2}$	M1	for attempt to differentiate		
	When $\frac{dA}{dx} = 0$, $x^3 = \frac{1600}{\sqrt{3}}$	M1	for equating $\frac{dA}{dx}$ to 0 and attempt		
	x = 9.74 so $A = 246$	A1 A1	for correct x for correct A		
	$\frac{d^2 A}{dx} = \sqrt{3} + \frac{3200}{x^3}$ which is positive for x = 9.74 so the value is a minimum	M1 A1ft	for attempt at second derivative and conclusion, or alternate methods ft for a correct conclusion from completely correct work, follow through on <i>their</i> positive <i>x</i> value.		
10 (i)	$\tan \theta = \frac{1 + 2\sqrt{5}}{6 + 3\sqrt{5}} \times \frac{6 - 3\sqrt{5}}{6 - 3\sqrt{5}}$ $= \frac{6 - 3\sqrt{5} + 12\sqrt{5} - 30}{36 - 45}$	M1	for attempt at $\cot \theta$ together with rationalisation Must be convinced that a calculator is not being used.		
	$=\frac{8}{3}-\sqrt{5}$	A1, A1	A1 for each term		
(ii)	$\tan^2 \theta + 1 = \sec^2 \theta$ $\frac{64}{9} - \frac{16\sqrt{5}}{3} + 5 + 1 = \csc^2 \theta$	M1	for attempt to use the correct identity or correct use of Pythagoras' theorem together with <i>their</i> answer to (i) Must be convinced that a calculator is not being used.		
	so $\operatorname{cosec}^2 \theta = \frac{118}{9} - \frac{16\sqrt{5}}{3}$	A1, A1	A1 for each term		
	Alternate solutions are acceptable				

Page 6	Mark Scheme Cambridge IGCSE – March 2	Syllabus Par 0606 12	oer 2		
11 (a) (i)	LHS = $\frac{\frac{1}{\sin y}}{\frac{\cos y}{\sin y} + \frac{\sin y}{\cos y}}$	M1	for dealing with cosec, cot and in terms of sin and cos		
	$=\frac{\frac{1}{\sin y}}{\frac{\cos^2 y + \sin^2 y}{\sin y \cos y}}$	M1	for use of $\sin^2 y + \cos^2 y = 1$		
	$=\frac{1}{1}\times\sin y\cos y$				
		A1	for correct simplification to go required result.	et the	
(ii)	$\cos 3z = 0.5$ $3\tau - \frac{\pi}{2} 5\pi - \frac{7\pi}{2}$	M1	for use of (i) and correct attemp deal with multiple angle		
	$5z = \frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}$ $z = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$	A1, A1	A1 for each 'pair' of solutions	S	
(b)	$2\sin x + 8\left(1 - \sin^2 x\right) = 5$	M1	for use of correct identity		
	$8\sin^{2} x - 2\sin x - 3 = 0$ (4 sin x - 3)(2 sin x + 1) = 0	M1	for attempt to solve quadratic		
	$\sin x = \frac{3}{4},$ $\sin x = -\frac{1}{2}$ $x = 48.6^{\circ}, 131.4^{\circ}$ 210°, 330°	A1, A1	A1 for each pair of solutions		